
Technical Report: Constructing and Analyzing the LSM
Compaction Design Space [Experimental Analysis Paper]
Subhadeep Sarkar Dimitris Staratzis Zichen Zhu Manos Athanassoulis

Boston University

ABSTRACT
Log-structured merge (LSM) trees offer efficient ingestion by ap-
pending incoming data. LSM-trees are widely used as the storage
layer of production NoSQL data stores. To enable competitive read
performance, LSM-trees periodically re-organize data to form a
tree with levels of exponentially increasing capacity, through iter-
ative compactions. Compactions fundamentally influence the per-
formance of an LSM-engine in terms of write amplification, write
throughput, point and range lookup performance, space amplifi-
cation, and delete performance. Hence, choosing the appropriate
compaction strategy is crucial and, at the same time, hard as the LSM-
compaction design space is vast, largely unexplored, and has not
been formally defined in the literature. As a result, most LSM-based
engines use a fixed compaction strategy, typically hand-picked by
an engineer, which decides how and when to compact data.

In this paper, we present the design space of LSM-compactions,
and evaluate state-of-the-art compaction strategies with respect to
their key performance metrics. Toward this goal, our first contri-
bution is to introduce a set of design primitives that can formally
define any compaction strategy.We identify four primitives, namely
(i) compaction trigger, (ii) compaction eagerness, (iii) compaction
granularity, and (iv) data movement policy, which can synthesize
any existing and also completely new compaction strategies. Our
second contribution is to experimentally analyze compaction strate-
gies. We present 23 observations and 10 high-level takeaway mes-
sages, which fundamentally show how LSM systems can navigate
the design space of compactions.

1 INTRODUCTION
LSM-based Key-Value Stores. Log-structured merge (LSM) trees
are widely used today as the storage layer of modern NoSQL key-
value stores [31, 35, 37]. LSM-trees employ the out-of-place para-
digm to achieve fast ingestion. Incoming key-value pairs are buffered
in main memory, and are periodically flushed to persistent storage
as sorted immutable runs. As more runs accumulate on disk, they are
sort-merged to construct fewer yet longer sorted runs. This process
is known as compaction [25, 35]. To facilitate fast point lookups, LSM-
trees use auxiliary in-memory data structures (Bloom filters and
fence pointers) that help to reduce the average number of disk I/Os
performed per lookup [18, 19]. Owing to these advantages, LSM-
trees are adopted by several production key-value stores including

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Round-robin
Least overlap
Coldest
Oldest
Tombstone density
Tombstone-TTL

Leveling
Tiering
1-leveling
L-leveling
Hybrid

Level saturation
#Sorted runs
Timestamp-based
Space amplification
Read amplification

Level
Sorted run
Sorted file
Several sorted files

RocksDB Casandra
X-Engine Lethe

Point query
performance

Write
amplification

Space
amplification

Range scan
performance

Write
Performance

Delete
performance

better

(a)

better for: read write space

Compaction trigger1 Compaction eagerness2

Compaction granularity3 Data movement policy4

Delete

Compaction strategy

(b)

Fig. 1: (a) The different compaction strategies adopted in
state-of-the-art LSM-engines lead to the diverse perfor-
mances offered by the engines; (b) The taxonomy of LSM
compactions in terms of the design primitives.

LevelDB [27] and BigTable [15] at Google, RocksDB [25] at Face-
book, X-Engine [29] at Alibaba,WiredTiger at MongoDB [53], Cock-
roachDB at Cockroach Labs [16], Voldemort [34] at LinkedIn, Dy-
namoDB [22] at Amazon, AsterixDB [2], Cassandra [6], HBase [7],
Accumulo [5] at Apache, and bLSM [49] and cLSM [26] at Ya-
hoo. Academic systems based on LSM-trees include Monkey [18],
SlimDB [40], Dostoevsky [19, 20], LSM-Bush [21], Lethe [44], Silk [10,
11], LSbM-tree [51], SifrDB [36], and Leaper [55].
Compactions in LSM-Trees. Compactions in LSM-trees are em-
ployed periodically to reduce read and space amplification at the cost
of write amplification while ensuring data consistency and query
correctness [8, 9]. A compactionmerges two ormore sorted runs, be-
tween one or multiple levels to ensure that the LSM-tree maintains
levels with exponentially increasing sizes [37]. Compactions are
typically invoked when a level reaches its capacity, at which point,
the compaction routine moves data from the saturated level to the
next one, that has an exponentially larger capacity. Any duplicate
entries (resulting from updates) and invalidated entries (resulting
from deletes) are removed during a compaction, retaining only the
logically correct (latest valid) version [24, 38]. A compaction either
(a) sort-merges two consecutive levels in their entirety – full com-
paction or (b) sort-merges a part of a level only with the overlapping
part from the next level – partial compaction. Compactions dictate
how and when disk-resident data is re-organized, and thereby, in-
fluence the physical data layout on the disk. Fig. 1(a) presents a
qualitative comparison of the performance implications of the vari-
ous compaction strategies adopted in state-of-the-art LSM-engines.
TheChallenge:Hand-PickingCompaction Strategies.Despite
compactions being critical to the performance of LSM-engines, the
process of choosing an appropriate compaction strategy requires a
human in the loop. In practice, decisions on “how to (re-)organize
data on disk”, and thereby, “which compaction strategies to imple-
ment or use” in a production LSM-based data store are often subject
to the expertise of the engineers or the database administrators
(DBAs). This is largely due to two reasons. First, the process of com-
paction in LSM-trees is often treated as a black-box and is rarely

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

exposed as a tunable knob [54]. While the LSM-compaction design
space is vast, the lack of a formal template for compactions leads to
heavily relying on individual expertise, leaving a large part of the
design space unexplored. Second, there is a lack of analytical and
experimental data on how compactions influence the performance
of an LSM-engine subject to the underlying design of the storage
engine and the workload characteristics. Hence, it is difficult, even
for experts, to answer design questions such as:
(i) My LSM-engine is offering lower write performance than ex-

pected:Would a change in the compaction strategy help? If yes,
which strategies should be used?

(ii) The workload we used to process has changed: How does this
affect the read throughput of my system? Is there a compaction
strategy that can improve the read throughput?

(iii) We are due to design a new LSM-engine for processing a spe-
cific workload: How should I compact my data for best overall
performance? Is there a compaction strategy that I must avoid?

Relying on human expertise to hand-pick the appropriate com-
paction strategies for each application does not scale, especially for
large-scale system deployments.
Contributions. To this end, in this work, we formalize the design
space of compactions in LSM-based storage engines. Further, we
experimentally explore this space, and based on this, we present 10
high-level takeaway message, and 23 observations that serve as a
comprehensive set of guidelines for LSM-compactions, and lay the
groundwork for compaction tuning and automation.
Conceptual Contribution: Constructing the Compaction De-
sign Space.We identify the defining characteristics of a compaction,
or compaction primitives: (i) the trigger (i.e., when to compact), (ii)
the eagerness (i.e., how to organize the data after compaction), (iii)
the granularity (i.e., how much data to compact at a time), and (iv)
the data movement policy (i.e., which data to compact). Together,
the four primitives define when and how to compact data in an
LSM-tree. Fig. 1(b) presents the taxonomy of LSM-compactions
along with the various options for each of the design primitives.
Experimental Contribution 1: Unifying the Experimental In-
frastructure of Multiple Compaction Strategies. To establish
a consistent experimental platform, we integrate several state-of-
the-art compaction strategies into a unified codebase, based on
the widely adopted open-source RocksDB [25] LSM-engine. This
integration bridges wild variations of implementation and config-
uration knobs of different compaction strategies across different
LSM-engines. Further, we implement each compaction strategy (1)
through the prism of the aforementioned four primitives, and (2) on
top of the same data store to ensure an apples-to-apples comparison.
We implement nine state-of-the-art compaction strategies that are
popular among production and academic systems and are key to
the understanding of the LSM-compaction design space. We imple-
ment these strategies through significant modifications to the latest
RocksDB codebase, and expose more than a hundred design knobs
to enable custom configuration and to ensure a fair evaluation.
Experimental Contribution 2: Analyzing the Compaction De-
sign Space. We provide a comprehensive experimental analysis of
the LSM-compaction design space, which quantifies the impact of
each of the design primitives on a number of performance metrics.
This experimental analysis also serves as a roadmap for selecting

a compaction strategy subject to the workload characteristics and
performance goals. We perform more than 2000 experiments with
the nine compaction strategies to take a deep dive on the following.
• Performance Implications of Compactions. We quantify the im-
pact of compactions on LSM performance in terms of ingestion
throughput, query latency, space and write amplification, and
delete efficacy in §5.1.

• Workload Influence on Compactions.While the composition and
(ingestion and access) distribution of the workload influence the
compaction performance, deciding which compaction strategy to
employ is workload-agnostic in existing systems. To analyze the
workload’s impact on compactions performance, we experiment
with a number of representative workloads by varying (i) the
size of ingested data, (ii) the proportion of ingestion and lookups,
(iii) the proportion of empty and non-empty point lookups, (iv)
the selectivity of range queries, (v) the fraction of updates and
(vi) deletes, (vii) the key-value size, as well as (viii) the workload
distribution (uniform, normal, and Zipfian) in §5.2.

• Tuning Influence on Compactions. LSM tuning typically focuses
on knobs like memory buffer size, page size, and size ratio which
are not believed to be connected with compaction performance.
We experiment with these knobs to uncover when compactions
are affected (and when not) by these knobs in §5.3.

• Answering Design Questions. Finally, throughout §5 we present
various observations and key insights of our experimental evalu-
ation, and in §6 we discuss a roadmap for designing and choosing
compaction in LSM-engines.

This work defines the LSM compaction design space and presents a
thorough account of how the different primitives affect compactions

and how each compaction strategy, in turn, affects the overall
performance of a storage engine.

Key Takeaways. Finally, the high-level key takeaways from our
analysis are the following.
A. There is no perfect compaction strategy.When it comes to selecting
a compaction strategy for an LSM-engine, there is no single best.
Thus, a compaction strategy needs to be custom-tailored to specific
combinations of workload, LSM tuning, and performance goals.
B. It is important to look into the compaction “black-box”. To un-
derstand the performance implications of LSM compactions, it is
crucial to stop treating them as a black-box; rather, as an ensem-
ble of fundamental design primitives. Following this approach we
reason about the performance implications of each design primi-
tive independently. We identify and avoid common pitfalls given a
workload and a target performance.
C. Switching compaction strategies can significantly boost the perfor-
mance of an LSM-engine. Switching between compaction strategies
as the workload changes and/or the performance goals shift can
boost the performance of an LSM-engine significantly. Understand-
ing the behavior and performance implications of the compaction
primitives allows for minor modifications to existing codebases to
invoke the appropriate compaction strategy, as necessary.

2 BACKGROUND
We now present the necessary background of LSM-trees and its
operations as well as the terminology we use in throughout the

2

paper. A more detailed discussion/survey on LSM-basics can be
found in the literature [18, 35].
LSM-Basics. To support fast data ingestion, LSM-trees buffer in-
coming inserts, updates, and deletes (i.e., ingestion, in general)
within main memory. Once the memory buffer becomes full, the
entries contained are sorted on the key and the buffer is flushed as
a sorted run to the disk-component of the tree. In practice, a sorted
run is a collection of one or more immutable files that have typically
the same size. For an LSM-tree with L levels, we assume that its
first level (Level 0) is an in-memory buffer and the remaining levels
(Level 1 to L − 1) are disk-resident [18, 35]. On disk, each Level i
(i > 1) has a capacity that is larger than that of Level i − 1 by a
factor of T , where T is the size ratio of the tree.
LSM-Compactions. To limit the number of sorted runs on disk
(and thereby, to facilitate fast lookups and better space utilization),
LSM-trees periodically sort-merge runs (or parts of a run) from
a Level i with the overlapping runs (or parts of runs) from Level
i +1. This process of data re-organization and creating fewer longer
sorted runs on disk is known as compaction. However, the process
of sort-merging data from different levels requires the data to be
moved back and forth between the disk and main memory. This
results in write amplification, which can be as high as 40× in state-
of-the-art LSM-based data stores [39].
Partial compactions. To amortize data movement, and thus, avoid
latency spikes, state-of-the-art LSM-engines organize data into
smaller files, and perform compactions at the granularity of files
instead of levels [24]. If Level i grows beyond a threshold, a com-
paction is triggered and one file (or a subset of files) from Level i
is chosen to be compacted with files from Level i + 1 that have an
overlapping key-range. This process is known as partial compaction.
The decision on which file(s) to compact depends on the design of
the storage engine. Fig. 2 presents a comparative illustration of the
full compaction and partial compaction routines in LSM-trees.
Querying LSM-Trees. Since LSM-trees realize updates and deletes
in an out-of-place manner, multiple entries with the same key may
exist in a tree with only the recent-most version being valid. Thus,
a query must find and return the recent-most version of an entry.
Point lookups. A point lookup starts at the memory buffer and
traverses the tree from the smallest level to the largest one, and
from the youngest run to the oldest one within a level. The lookup
terminates immediately after a match of the target key is found.
To limit the number of runs a lookup probes, state-of-the-art LSM-
based data stores use in-memory data structures, such as Bloom
filters and fence pointers [20, 25].
Range scans.A range scan requires sort-merging the runs qualifying
for a range query across all levels of the tree. The runs are sort-
merged in memory and the latest version for each qualifying entry
is returned while discarding all older, logically invalidated versions.
Deletes in LSM-Trees. Deletes in LSM-trees are performed log-
ically without necessarily disturbing the target entries. A point
delete operation is realized by inserting a special type of key-value
entry, known as a tombstone, that logically invalidates the target
entry. During compactions, a tombstone purges any older entries
with a matching key. A delete is eventually considered as persistent
once the corresponding tombstone reaches the last tree-level, at
which point the tombstone can be safely dropped. The time taken

18127

9

12 18

2 7 9 25

3 4 5 9 12 15 25 31

2 7 9 12 18 25

3 4 5 9 12 15 25 31

9 12 18 25

2 3 4 5 7 9 12 15 3125

12 18

2 7 25

2 7 9 12 18 25

3 4 5 9 12 15 25 31

2 4 53 9 15 25

insert 18

31

3 4 5 9 12 15 25 31

1 insert 18 1

flush buffer & compact
with the file in Level 1

2

Level 1 saturated;
initiate compaction

3

compact the single file
from Level 1 with the

file in Level 2

4

flush buffer & compact
with overlapping files

2

Level 1 saturated;
initiate compaction

3

compact one file from
Level 1 with overlapping

files in Level 2

4

full compaction: every compaction
job compacts all data from two
consecutive levels

5 partial compaction: compacts equi-sized
files with overlapping key-range from
two consecutive levels

5

Level
0

1

2

0

1

2

0

1

2

st
ep

 1

st
ep

 2
st

ep
 3

Level
0

1

2

0

1

2

0

1

2

st
ep

 1

st
ep

 2
st

ep
 3

memory buffer level capacity file (SST) file to compact files after compaction

(a) (b)

Fig. 2: (a) When invoked, the classical full compaction rou-
tine compactswhole levels at a time, while (b) in partial com-
paction, data is stored in equi-sized files which allows com-
pactions to be performed at the granularity of files.

to persistently delete a data object from an LSM-based data store
depends on process of data re-organization. Compactions, thus,
also play a critical role in timely and persistent deletion of entries.

3 THE COMPACTION DESIGN SPACE
In this section, we identify the design primitives that provide a
structured decomposition of arbitrary compaction strategies. This
allows us to create the taxonomy of the universe of LSM compaction
strategies including all the classical as well as new ones.

3.1 Compaction Primitives
We define a compaction strategy as an ensemble of design primitives
that represents the fundamental decisions about the physical data
layout and the data (re-)organization policy. Each primitive answers
a fundamental design question.
1) Compaction trigger : When to re-organize the data layout?
2) Compaction eagerness: How to lay out the data physically on

the persistent storage media?
3) Compaction granularity: How much data to move at-a-time

during layout re-organization?
4) Data movement policy:Which block of data to be moved during

re-organization?
Together, these design primitives define when and how an LSM-
engine re-organizes the data layout on the persistent media. The
proposed primitives capture any state-of-the-art LSM-compaction
strategy and also enables synthesizing new or unexplored com-
paction strategies. Below, we define these four design primitives.

3.1.1 Compaction Trigger. Compaction triggers refer to the set
of events that can initiate a compaction job. The most common
compaction trigger is based on the degree of saturation of a level in
an LSM-tree [2, 25–27, 30, 49, 50]. The degree of saturation for Level
i (1 ≤ i ≤ L − 1) is typically measured as the ratio of the number of
bytes of data stored in Level i to the theoretical capacity in bytes for
Level i . Once the degree of saturation goes beyond a pre-defined
threshold, one or more immutable files from Level i are marked
for compaction. Some LSM-engines use the file count in a level to
compute degree of saturation [27, 29, 30, 42, 48]. Note that, the file
count-based degree of saturation works only when all immutable
files are of equal size or in systems that have a tunable file size.

3

tie
ri

ng

1

2

L

L - LevelingTiering

Leveling 1 - Leveling

1

2

L

1

2

L

1

2

L

Eagerness
1

2

3

size > capacity
Trigger

1

2

3

#runs > threshold

1

2

3

staleness > threshold stale

new

1

2

3

Granularity

file

run

level

1

2

3

1

2

3

1

2

3

Data Movement Policy

least-overlap

coldest file

round-robin

1

2

3

1

2

3

cold

hot
tie

ri
ng

le
ve

lin
g

le
ve

lin
g

single run
per level

multiple runs
per level

Fig. 3: The primitives that define LSM compactions: trigger, eagerness, granularity, and data movement policy.
In practice, a compaction job starts as soon as all the necessary
resources, i.e., memory, CPU, and device bandwidth, are available.

Other compaction triggers include the staleness of a file, the
tombstone-based time-to-live, space amplification, and even read
amplification. For example, to ensure propagation of updates and
deletes to the deeper levels of a tree, some LSM-engines assign a
time-to-live (TTL) for each file during its creation. Each file can
live in a level for a bounded time, and once the TTL expires, the file
is marked for compaction [25]. Another delete-driven compaction
trigger ensures bounded persistence latency of deletes in LSM-trees
through a different timestamp-based scheme. Each file containing
at least one tombstone is assigned a special time-to-live in each
level, and up on expiration of this timer, the file is marked for com-
paction [44]. Compaction triggers based on space amplification [42]
and read amplification [33] that can facilitate specific applications
have also been implemented in production data stores. Below, we
present a list of the most common compaction triggers:
i) Level saturation: level size goes beyond a nominal threshold
ii) #Sorted runs: sorted run count for a level reaches a threshold
iii) File staleness: a file lives in a level for too long
iv) Space amplification (SA): overall SA surpasses a threshold
v) Tombstone-TTL: files have expired tombstone-TTL

3.1.2 Compaction Eagerness. The compaction eagerness deter-
mines the data layout on storage by controlling the number of
sorted runs per level. Compactions move data back and forth be-
tween storage and memory, consuming a significant proportion of
the device bandwidth. There is, thus, an inherent competition for
the device bandwidth between ingestion (external) and compaction
(internal) – a trade-off depending on the eagerness of compactions.

The compaction eagerness is commonly classified into two cat-
egories: leveling and tiering [18, 19]. With leveling, once a com-
paction is triggered in Level i , the file(s) marked for compaction are
merged with the overlapping file(s) from Level i + 1, and the result
is written back to Level i + 1. As a result, Level i + 1 ends up with
a (single) longer sorted run of immutable files [25–27, 29, 30, 49].
For tiering, each level may contain more than one sorted runs with
overlapping key domains. Once a compaction is triggered in Level
i , all sorted runs in Level i are merged together, the result of which
is written to Level i + 1 as a new sorted run without disturbing the
existing runs in that level [2, 6, 7, 25, 48, 50].

A hybrid design is proposed in Dostoevsky [20] where the last
level is implemented as leveling and all the remaining levels on disk
are tiered. The number of runs in each of these levels is configurable,
subject to the workload composition. A generalization of this idea
is proposed in the as a continuum of designs [21, 32] that allows
each level to separately decide between leveling and tiering. Among

production systems, RocksDB implements the first disk-level (Level
1) as tiering [42], and it is allowed to grow perpetually in order to
avoid write-stalls [10, 11, 13] in ingestion-heavy workloads. Note
that some production LSM-engines internally assign a higher prior-
ity to writes over compactions to avoid write stalls; however, this
tuning leads to a tree structure that violates the LSM-tree proper-
ties, and thus, is out of the scope of our analysis. Below is a list of
the most common options for compaction eagerness:
i) Leveling: every time a sorted run arrives to a level
ii) Tiering: when the #sorted runs per level reaches a threshold
iii) 1-leveling: tiering for Level 1; leveling otherwise
iv) L-leveling: leveling for last level; tiering otherwise
v) Hybrid: a level can be tiering or leveling independently

3.1.3 Compaction Granularity. Compaction granularity refers
to the amount of data moved during a single compaction job, once
the compaction trigger fires. In the classical LSM-design [37], once
a level reaches its capacity, all data from that level are moved to
the next level through compaction. To amortize the I/O costs due
to compactions, state-of-the-art leveled LSM-based engines employ
partial compaction [25, 27, 29, 44, 48]. In partial compaction, instead
of moving a whole level, a smaller granularity of data participates
in every compaction. The granularity of data can be a single file [24,
29, 44] or multiple files [1, 2, 6, 37] depending on the system design
and the workload. Note that, partial compaction does not radically
change the total amount of data movement due to compactions,
but amortizes this data movement uniformly over time, thereby
preventing undesired latency spikes. The exact data movement due
to compaction, is determined by the size ratio of a tree and by the
data movement policy we discuss next. Below, we present a list of
the most common compaction granularity options:
i) Level: all data in two consecutive levels
ii) Sorted run: all sorted runs in a level
iii) Sorted file: one sorted file at a time
iv) Several sorted files: several sorted files at a time

3.1.4 Data Movement Policy. The data movement policy is rel-
evant for LSM-engines adopting partial compaction as it involves
a decision-making on which file(s) to choose for compaction. Full-
level compaction does not need such a policy. While the literature
commonly refers to this decision as file picking policy [23], we use
the term data movement to generalize for any possible data move-
ment granularity. Moving a file from a shallower level (Level i) to a
deeper level (Level i + 1) affects point lookup performance, write
and space amplification, as well as delete performance.

A naïve way to choose file(s) is at random or by using a round-
robin policy [27, 30]. These data movement policies do not focus

4

on optimizing for any particular performance metric, but help in re-
ducing space amplification. To optimize for read throughput, many
production data stores [25, 29] select the “coldest” file(s) in a level
once a compaction is triggered. Another common optimization goal
is to minimize write amplification. In this policy, files with the least
overlap with the target level are marked for compaction [12, 23]. To
reduce space amplification, some storage engines choose files with
the highest number of tombstones and/or updates [25]. Another
delete-aware approach introduces a tombstone-timestamp driven
file picking policy that aims to timely persist logical deletes [44].
Note that, as LSM-trees store data in immutable files, the smallest
granularity of data movement is typically a file. Below, we present
the list of the most common data movement policies:
i) Round-robin: chooses files in a round-robin manner
ii) Least overlapping parent: file with least overlap with “parent”
iii) Least overlapping grandparent: as above with “grandparent”
iv) Coldest: the least recently accessed file
v) Oldest: the oldest file in a level
vi) Tombstone density: file with #tombstones above a threshold
vii) Tombstone-TTL: file with expired tombstones-TTLs

3.2 Compaction as an Ensemble of Primitives
Synthesizing Diverse Compaction Strategies. By definition, ev-
ery compaction strategy takes one or more values for each of the
four primitives. The trigger, granularity, and data movement policy
are multi-valued primitives, whereas eagerness is single-valued.

For example, the classical LSM-tree [37] is a leveled tree (ea-
gerness) that compacts whole levels at a time (granularity) once a
level reaches a nominal size (trigger). The classical LSM-design
does not implement many subtle optimizations including partial
compactions, and by definition, does not need a data movement
policy. A more complex example is the compaction strategy for a
leveled LSM-tree (eagerness) in which compactions are performed
at the granularity of a file. A compaction is triggered if either (a) a
level reaches its capacity or (b) a file containing tombstones
is retained in a level longer than a pre-set TTL [44]. Once
triggered, the data movement policy chooses (a) the file with the
highest density of tombstones, if there is one or (b) the file
with the least overlap with the parent level, otherwise.
The Compaction Design Space Cardinality. Two compaction
strategies are considered different from each other if they differ in
at least one of the four primitives. Two compaction strategies that
are identical in terms of three of the four primitives, but only differ
in one (say, data movement), can have vastly different performance
when subject to the same workload while running on identical
hardware. Plugging in some typical values for the cardinality of the
primitives, we estimate the cardinality of the compaction universe
as >104, a vast yet largely unexplored design space. Table 1 shows a
representative part of this space, detailing the compaction strategies
used for more than twenty academic and production systems.
Compactions Analyzed. For our analysis and experimentation,
we select nine representative compaction strategies that are preva-
lent in production and academic LSM-based systems. These strate-
gies capture thewide variety of the possible compaction designs.We
codify and present these candidate compaction strategies in Table 2.
Full represents the classical compaction strategy for leveled LSM-
trees that compacts two consecutive levels upon invocation. LO+1

Database Compaction

Compaction Compaction Data Movement

Eagerness

Trigger Granularity Policy

Le
ve
ls
at
ur
at
io
n

#S
or
te
d
ru
ns

Fi
le
st
al
en
es
s

Sp
ac
e
am

p.

To
m
bs
to
ne
-T
TL

Le
ve
l

So
rt
ed

ru
n

Fi
le
(s
in
gl
e)

Fi
le
(m

ul
tip

le
)

Ro
un

d-
ro
bi
n

Le
as
to

ve
rla

p
(+
1)

Le
as
to

ve
rla

p
(+
2)

Co
ld
es
tfi

le
O
ld
es
tfi

le
To

m
bs
to
ne

de
ns
ity

Ex
pi
re
d
TS

-T
TL

N
/A

(e
nt
ire

le
ve
l)

RocksDB [25], Leveling /
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Monkey [19] 1-leveling
Tiering ✓ ✓ ✓ ✓ ✓

LevelDB [27], Leveling ✓ ✓ ✓ ✓ ✓Monkey (J.) [18]
SlimDB [40] Tiering ✓ ✓ ✓ ✓

Dostoevsky [20] L-leveling ✓L ✓T ✓L ✓T ✓L ✓T

LSM-Bush [21] Hybrid leveling ✓L ✓T ✓L ✓T ✓L ✓T

Lethe [44] Leveling ✓ ✓ ✓ ✓ ✓ ✓

Silk [10], Silk+ [11] Leveling ✓ ✓ ✓ ✓

HyperLevelDB [30] Leveling ✓ ✓ ✓ ✓ ✓

PebblesDB [39] Hybrid leveling ✓ ✓ ✓ ✓

Cassandra [6] Tiering ✓ ✓ ✓ ✓ ✓

Leveling ✓ ✓ ✓ ✓ ✓ ✓ ✓

WiredTiger [53] Leveling ✓ ✓ ✓

X-Engine [29], Leaper [55] Hybrid leveling ✓ ✓ ✓ ✓ ✓

HBase [7] Tiering ✓ ✓ ✓

AsterixDB [2] Leveling ✓ ✓ ✓

Tiering ✓ ✓ ✓

Tarantool [50] L-leveling ✓L ✓T ✓L ✓T ✓

ScyllaDB [48] Tiering ✓ ✓ ✓ ✓ ✓

Leveling ✓ ✓ ✓ ✓ ✓ ✓ ✓

bLSM [49], cLSM [26] Leveling ✓ ✓ ✓

Accumulo [5] Tiering ✓ ✓ ✓ ✓ ✓

LSbM-tree [51, 52] Leveling ✓ ✓ ✓

SifrDB [36] Tiering ✓ ✓ ✓

Table 1: Compaction strategies in state-of-the-art systems.
[✓L : for levels with leveling; ✓T : for levels with tiering.]

and LO+2 denote two partial compaction routines that choose a file
for compaction with the smallest overlap with files in the parent
(i +1) and grandparent (i +2) level, respectively. RR chooses files for
compaction in a round-robin fashion from each level. Cold and Old
are read-friendly compaction strategies that mark the coldest and
oldest file(s) in a level for compaction, respectively. TSD and TSA are
delete-driven compaction strategies with triggers and data move-
ment policies that are determined by the density of tombstones
and the age of the oldest tombstone contained in a file, respectively.
Finally, Tier represents the variant of tiering compaction with a
trigger of space amplification.

4 BENCHMARKING COMPACTIONS
We now discuss the benchmarking process, discussing our experi-
mental platform, how we integrated new compactions policies, and
our measurement methodology.

4.1 Standardization of Compaction Strategies
We choose RocksDB [25] as our experimental platform, as it (i)
is open-source, (ii) is widely used across industry and academia,
(iii) has a large active community. To ensure fair comparison we
implement all compaction strategies under the same LSM-engine.
Implementation.We integrate our codebase into RocksDB v6.11.4.
We assign to compactions a higher priority than writes to accurately
measure their performance implications, while guaranteeing that
the LSM structure is maintained during workload execution [47].
Compaction Trigger. The default compaction trigger for (hybrid)
leveling in RocksDB is level saturation [41], and for the univer-
sal compaction is space amplification [42]. RocksDB also supports
delete-driven compaction triggers, specifically whether the #tomb-
stones in a file goes beyond a threshold. We further implement a
trigger based on the tombstones age to facilitate timely deletes [44].

5

Primitives Full
[2, 37, 53]

LO+1 [19, 25, 44] Cold [25] Old [25] TSD [25, 44] RR
[26, 27, 30, 49]

LO+2 [27, 30] TSA [43] Tier
[6, 28, 40, 48]

Compaction trigger level saturation level saturation level saturation level saturation 1. TS-density level saturation level saturation 1. TS age level saturation2. level saturation 2. level saturation

Compaction eagerness leveling leveling leveling leveling leveling leveling leveling leveling tiering

Compaction granularity levels files files files files files files files sorted runs

Data movement policy N/A least overlapping
parent

coldest file oldest file 1. most tombstones
2. least overlapping parent

round-robin least overlapping
grandparent

1. expired TS-TTL
2. least overlapping parent

N/A

Table 2: Compaction strategies evaluated in this work.

Compaction Eagerness. By default, RocksDB supports only two de-
grees of eagerness: hybrid leveling (tiered first level, leveled oth-
erwise) [41] and a variation of tiering (with a different trigger),
termed universal compaction [42]. We also implement pure leveling
by limiting the number of first-level runs to one, and triggering a
compaction when the number of first-level files is more than one.
Compaction Granularity. The granularity for leveling is file and
sorted runs for tiering. To implement classical leveling, we mark
all files of a level for compaction. We ensure that ingestion may
resume only after all the compaction-marked files are compacted
thereby replicating the behavior of the full compaction routine.
Data Movement Policy. RocksDB (v6.11.4) provides four different
data movement policies: a file (i) with least overlap with its par-
ent level, (ii) least recently accessed, (iii) with the oldest data in a
level, and (iv) that has more tombstones than a threshold. We also
implement partial compaction strategies that choose a file (v) in a
round-robin manner, (vi) with the least overlap with its grandparent
level, and (vii) based on the age of the tombstones in a file.
Designing theCompactionAPI.Weexpose the compaction prim-
itives through a new API as configurable knobs. An application can
configure the desired compaction strategy and initiate workload
execution. The API also allows the application to change the com-
paction strategy for an existing database. Overall, our experimental
infrastructure allows us (i) to ensure an identical underlying struc-
ture while setting the compaction benchmark, and (ii) to tune and
configure the design of the LSM-engine as necessary.

4.2 Performance Metrics
Compactions affect both LSM reads and writes. Below, we present
the performance metrics used in our experimental evaluation.
Write Amplification (WA). The repeated reads and writes due to
compaction cause highWA [39]. We formally defineWA as the num-
ber of times an entry is (re-)written without any modifications to disk
during its lifetime.Weuse the RocksDBmetric compact.write.bytes
and the actual data size to compute WA.
Write Latency. Write latency is driven by the device bandwidth
utilization, which depends on (i) write stalls due to compactions and
(ii) the sustained device bandwidth.We use the db.write.micros
histogram to measure the average and tail of the write latency.
Read Amplification (RA). RA is the ratio between the number of
disk pages read for a point lookup and the number of point lookups.
We use rocksdb.bytes.read to compute RA.
Point Lookup Latency. Compactions determine the position of
the files in an LSM-tree which affects point lookups on entries
contained in those files. Here, we use the db.get.micros histogram.
Range Lookup Latency. The range lookup latency depends on the
selectivity of the range query, but is affected by compaction eager-
ness. We also use the db.get.micros histogram for range lookups.

Space Amplification (SA). SA depends on compaction eagerness,
compaction granularity, and the data movement policy. SA is de-
fined as the ratio between the size of logically invalidated entries and
the size of the unique entries in the tree [20].We compute SA using
the size of the database and the size of the logically valid entries.
Delete Performance. We measure the degree to which the tested
approaches persistently delete entries within a time-limit [44]. We
use the RocksDB file metadata age and a delete persistence threshold.

4.3 Benchmarking Methodology
Having discussed the benchmarking approaches and the metric
measured, we now discuss the methodology for varying the key
input parameters for our analysis: workload and the LSM tuning.

4.3.1 Workload. A typical key-value workload comprises of five
primary operations: inserts, updates, point lookups, range lookups,
and deletes. Point lookups target keys that may or may not exist
in the database – we refer to these as non-empty and empty point
lookups, respectively. Range lookups are characterized by their se-
lectivity, and deletes target keys that are present in the database. To
analyze the impact of each operation in our experiments we vary
the fraction of each operation as well as their qualitative charac-
teristics (i.e., empty vs. non-empty, selectivity, key size, and value
size). We further vary the data distribution of ingestion and read
queries focusing on (i) uniform, (ii) normal, and (iii) Zipfian distri-
butions. Overall, our custom-built benchmarking suite is a superset
of the influential YCSB benchmark [17] as well as the insert bench-
mark [14], and supports a number of important knobs that are
missing from existing workload generators, including deletes. Our
workload generator exposes over 64 degrees of freedom, and is
available via GitHub [46] for dissemination, testing, and adoption.

4.3.2 LSM Tuning. We further study the interplay of LSM tun-
ing and compaction strategies. We consider questions like which
compaction strategy is appropriate for a specific LSM design and a
given workload? To answer such questions we vary in our experi-
mentation key LSM tuning parameters, like (i) the memory buffer
size, (ii) the block cache size, and (iii) the size ratio of the tree.

5 EXPERIMENTAL EVALUATION
We now present the key experimental results using the nine com-
paction strategies listed in Table 2.
Goal of the Study. Our analysis aims to answer the following
three fundamental questions:

i) Performance implications: How do compactions affect the
overall performance of LSM-engines?

ii) Workload influence: How do workload distribution and com-
position influence compactions, and thereby, the perfor-
mance of LSM-engines?

6

iii) Tuning influence: What is the interplay between LSM com-
pactions and tuning?

Ultimately, the goal of this study is to help practitioners and re-
searchers to make informed decisions when deciding which com-
paction strategies to support and use in an LSM-based engine.
Experimental Setup. All experiments were run on AWS EC2
server with instances of type t2.2xlarge (virtualization type: hard-
ware virtual machine) [4]. The virtual machines (VMs) used were
supported by 8 Intel Scalable Processors (vCPUs) clocked at 3.0GHz
each, 32GB of DIMM RAM, 45MB of L3 cache, and were running
Ubuntu 20.04 LTS. Each VM had an attached 40GB SSD volume
with 4000 provisioned IOPS (volume type: io2) [3].
Default Setup. Unless otherwise mentioned, all experiments are
performed on a RocksDB setup with an LSM-tree of size ratio 10.
The memory buffer is implemented as a skiplist. The size of the
write buffer is set to 8MB which can hold up to 512 16KB disk
pages. Fence pointers are maintained for each disk page and Bloom
filters are constructed for every file with 10 bits memory allocated
for every entry. Additionally, we have 8MB block cache (RocksDB
default) assigned for data, filter, and index blocks. To capture the
true raw performance of RocksDB as an LSM-engine, we (i) assign
compactions a higher priority than writes, (ii) enable direct I/Os
for both read and write operations, and (iii) set the number of
background threads responsible for compactions to 1.
Workloads. Unless otherwise mentioned, ingestion and lookups
are uniformly generated, and the average size of a key-value entry
is 128B with 4B keys. We vary the number of inserts, going up to
226. As compaction performance proves to be agnostic to data size,
and in the interest of experimenting with many configurations, we
perform our base experiments with 10M inserts, both interleaved
and serial with respect to lookups.
Presentation. For each experiment, we present the primary obser-
vations (O) along with key takeaway (TA) messages. In the interest
of space, we limit our discussion to the most interesting results and
observations. More results are available in our technical report [45].
Further, note that the delete-driven compaction strategies, TSD and
TSA, fall back to LO+1 in absence of deletes, and thus, are omitted
from the experiments without deletes.

5.1 Performance Implications
We first analyze the implications of compactions on the ingestion,
lookup, and overall performance of an LSM-engine.

5.1.1 Data loading. In this experiment, we insert 10M key-value
entries uniformly generated into an empty database to quantify
the raw ingestion performance. The influence of the different com-
paction policies on ingestion is shown in Fig. 4(a)-(d).
O1: Compactions Cause High Data Movement. Fig. 4(a) shows
that the overall (read and write) data movement due to compactions
is significantly larger than the actual size of the data ingested. We
observe that among the leveled LSM-designs, Fullmoves 63× (32×
for reads and 31× for writes) the data originally ingested. The data
movement is significantly smaller for Tier, however, it remains
12× of the data size. These observations confirm the remarks on
write amplification in LSMs presented in the literature [39], but
also highlight the problem of read amplification due to compactions
leading to poor device bandwidth utilization.

TA I:Compactions with higher eagernessmovemore data. Eager com-
pactions (leveling) compact 2.5–5.5× more data than lazier ones (tiering).

O2: Partial Compaction Reduces Data Movement. We now
shift our attention to the differences between the different vari-
ations of leveling. Contrary to Full, all other approaches do not
compact entire levels but only a small number of overlapping files.
Fig. 4(a) shows that leveled partial compaction leads to 34%–56%
less data movement than Full. The reason is twofold: (1) A file
with no overlap with its parent level, is only logically merged. Such
pseudo-compactions require simple metadata (file pointer) manipu-
lation in memory, and no I/Os. (2) Small compaction granularity
allows for choosing a file with (i) the least overlap, (ii) the highest
number of updates, or (iii) the highest # tombstones for compaction.
Such data movement policies reduce overall data movement. Specif-
ically, LO+1 (and LO+2) is designed to pick for compaction files with
least overlap with the parent i+1 (and grandparent i+2) level. They
move 10%–23% less data than other partial compaction strategies.

TA II: Smaller compaction granularity reduces datamovement. Par-
tial compactions move ∼42% less data than full-level compactions.

O3: TheCompactionCount isHigher for Partial Compaction
Routines. Fig. 4(b) shows that partial compactions initiate 4×more
compaction jobs than Full, as many as the number of levels in the
tree. Note that for a steady-state LSM-Tree with partial compactions
every memory buffer flush triggers cascading compactions to all L
levels, while in a full-level compaction system this happens only
when a level is full (every T compactions). Finally, since both Tier
and Full are full-level compactions the compaction count is similar.

TA III: Larger compaction granularity leads to fewer but larger
compactions. Full-level compactions perform about 1/L times fewer com-
pactions than partial compaction routines, however, full-level compaction
moves nearly 2L times more data per compaction.

O4: Full Leveling has theHighestMeanCompaction Latency.
As expected, Full compactions have the highest average latency
(1.2–1.9× higher than partial leveling, and 2.1× than tiering). Full
can neither take advantage of pseudo-compactions nor optimize the
data movement during compactions, hence, each compaction job
moves a large amount of data. Fig. 4(c) shows the mean compaction
latency for all strategies as well as the median (P50), the 90th per-
centile (P90), the 99th percentile (P99), and the maximum (P100).
We observe that the tail latency (P90, P99, P100) is more predictable
for full leveling while partial compactions and especially tiering
have high variability due to the different data movement policies
and the key-overlap depending on the data distribution.

The compaction latency presented in Fig. 4(c) can be broken to
IO time and CPU time. We observe that the CPU effort is about
50% regardless of the compaction strategy. During a compaction,
CPU cycles are spent in (1) obtaining locks and taking snapshots,
(2) merging the entries, (3) updating file pointers and metadata, and
(4) synchronizing output files post compaction. Among these, the
time spent to sort-merge the data in memory dominates.
O5: The Tail Write Latency is Highest for Tiering. Fig. 4(d)
shows the tail write latency – the worst case latency for a write
operation – is highest for tiering. Specifically, the tail write latency

7

read write

Full LO+1 LO+2 RR Cold Old Tier
0

10

20

30

40

50

D
at

a
m

ov
ed

 (G
B)

α = 0.0 α = 0.4 α = 1.0

Full LO+1 LO+2 RR Cold Old Tier
0.0

0.5

1.0

1.5

2.0

2.5

Compaction strategies

Po
in

t l
oo

ku
p

la
te

nc
y

(m
s)

0.5

1.0

2.0

4.0

8.0

Full LO+1 LO+2 RR Cold Old TierCo
m

pa
ct

io
n

la
te

nc
y

(s
)

selectivity

10−5 10−4 10−3

Full LO+1 LO+2 RR Cold Old Tier
0.0

0.2

0.4

0.6

0.8

1.0

Compaction strategies

Ra
ng

e
lo

ok
up

 la
te

nc
y

(s
)

Full LO+1 LO+2 RR Cold Old Tier
0

5

10

15

20

25

Compaction strategies

Ta
il

w
rit

e
la

te
nc

y
(m

s)

Full LO+1 LO+2 RR Cold Old Tier
0

100

200

300

400

Co
m

pa
ct

io
n

co
un

t(a) (b) (c) (d)

(e)

P100

P99
P90

mean

P50

Raw data size

(h)(f) (g)α = 0.0 α = 0.4 α = 0.8

Full LO+1 LO+2 RR Cold Old Tier
0

5

10

15

20

25

Compaction strategies

Re
ad

 a
m

pl
ifi

ca
tio

n

Full
LO+1

LO+2
RR

Cold
Old

Tier

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Proportion of empty point lookups (α)

Po
in

t l
oo

ku
p

la
te

nc
y

(m
s)

Fig. 4: Compactions influence the ingestion performance of LSM-engines heavily in terms of (a) the overall data movement,
(b) the compaction count, (c) the compaction latency, and (d) the tail latency for writes, as well as (e, f) the point lookup
performance. The range scan performance (g) remains independent of compactions as the amount of data read remains the
same. Finally, the lookup latency (h) depends on the proportion of empty queries (α) in the workload.
for tiering is about 2.5× greater than Full and 5–12× greater than
partial compaction strategies. Tiering in RocksDB [42] is optimized
for writes and opportunistically seeks to compact all data to a large
single level as a sorted run. This design achieves lower average
write latency at the expense of prolonged write stalls in the worst
case, which is when overlap between two consecutive levels is very
high. In addition, Full has 2–5× higher tail write stalls than partial
compactions because when multiple consecutive levels are close to
saturation, a buffer flush can result in a cascade of compactions.

TA IV: Tier and Full may cause prolonged write stalls. Tail write
stall for Tier is ∼25ms, while for partial leveling (Old) it is as low as 1.3ms.

5.1.2 Querying the Data. In this experiment, we perform 1M
point lookups on the previously generated preloaded database (with
10M entries). The lookups are uniformly distributed in the domain
and we vary the fraction of empty lookups α between 0 and 1.
Specifically, α = 0 indicates that we consider only non-empty
lookups, while for α = 1 we have lookups on non-existing keys.
We also execute 1000 range queries, while varying their selectivity.
O6: The Point Lookup Latency is Highest for Tiering and
Lowest for Full-Level Compaction. Fig. 4(e) shows that point
lookups perform best for Full, and worst for tiering. The mean
latency for point lookups with tiering is between 1.1–1.9× higher
than that with leveled compactions for lookups on existing keys, and
∼2.2× higher for lookups on non-existing keys. Note that lookups
on existing keys must always perform at least one I/O per lookup
(unless they are cached), and therefore, takes longer than that on
non- existing keys. When considering existing keys on a tree with
a size ratio T , theoretically, the lookup cost for tiering should be
T× higher than its leveling equivalent [18]. However, this worst-
case is not always accurate as, in practice the cost depends on the
(i) block cache size and the caching policy, (ii) temporality of the
lookup keys, and (iii) the implementation of the compaction strat-
egy. RocksDB tiering has overall fewer sorted runs that textbook
tiering. Taking into account the block cache and temporality in the
lookup workload, the observed tiering cost is less than T× the cost
observed for Full. In addition, Full is 3%–15% lower than the par-
tial compaction routines, because during normal operation of Full
some levels might be entirely empty, while for partial compaction

all levels are always close to being full. Finally, we note that the
various data movement policies used in the different partial level-
ing compaction strategies do not affect significantly point lookup
latency, which always benefits from Bloom filters (10 bits-per-key)
and the block cache, which is about 0.05% of the data size.
O7: The Point Lookup Latency Increases forWorkloadswith
Comparable Number of Empty and Non-Empty Queries. A
surprising result for point lookups that is also revealed in Fig. 4(e)
is that they perform worse when the fraction of empty and non-
empty lookups is balanced. Intuitively, one would expect that as we
have more empty queries (that is, as α increases) the latency would
decrease since the only data accesses needed by empty queries
are the ones due to Bloom filter false positives [18]. To further
investigate this result, we plot in Fig. 4(h) the 90th percentile (P90)
latency which shows a similar curve for point lookup latency as we
vary α . In our configuration each file uses 20 pages for its Bloom
filters, 4 pages for its index blocks, and that the false positive is
FPR = 0.8%. A non-empty query (α = 0) needs to load the Bloom
filters of the levels it visits until it terminates. For all intermediate
levels, it accesses the index and data blocks with FPR, and for the
level that finally finds its result, it loads the Bloom filter, the index
blocks, and the corresponding data. On the other hand, an empty
query (α = 1) accesses the Bloom filters of all levels before returning
an empty result. Note that for each level it also accesses the index
and data blocks with FPR. The counter-intuitive shape is a result
of the non-empty lookups not needing to load the Bloom filters for
all levels when α = 0 and the empty lookups accessing index and
data only when there is a false positive when α = 1.

TA V: The point lookup latency is largely unaffected by the data
movement policy. In presence of Bloom filters (with high enough memory)
and small enough block cache, the point query latency remains largely
unaffected by the data movement policy as long as the number of sorted runs
in the tree remains the same. This is because block-wise caching of the filter
and index blocks reduces the time spent performing disk I/Os significantly.

O8: Read Amplification is Influenced by the Block Cache
Size and File Structure, and is Highest for Tiering. Fig. 4(f)
shows that the read amplification across different compaction strate-
gies for non-empty queries (α = 0) is between 3.5 and 4.4. This is

8

Serial (α = 0)
Interleaved (α = 0)

Serial (α = 1)
Interleaved (α = 1)

Full LO+1 LO+2 RR Cold Old Tier0.0

0.5

1.0

1.5

2.0

Compaction strategies

Po
in

t l
oo

ku
p

la
te

nc
y

(m
s)

Serial Interleaved

Full LO+1 LO+2 RR Cold Old Tier0

10

20

30

40

50

60

Compaction strategies

Ta
il

w
rit

e
la

te
nc

y
(m

s)Serial Interleaved

Full LO+1 LO+2 RR Cold Old Tier0

10

20

30

40

50

Compaction strategies

W
rit

e
am

pl
ifi

ca
tio

nSerial Interleaved

Full LO+1 LO+2 RR Cold Old Tier
0

5

10

15

20

25

Compaction strategies

M
ea

n
 w

ri
te

 l
at

en
cy

 (
µ

s)

Serial Interleaved

Full LO+1 LO+2 RR Cold Old Tier
0.0

0.2

0.4

0.6

0.8

1.0

Compaction strategiesM
ea

n
co

m
pa

ct
io

n
la

te
nc

y
(s

)

(a) (b) (c) (d) (e)

Fig. 5: (a-c) The average ingestion performance for workloads with interleaved inserts and queries is similar to that of an
insert-only workload, but (d) with worse tail performance. However, (e) interleaved lookups are significantly faster.
attributed to the size of filter and index blocks which are 5× and 1×
the size of a data block, respectively. Each non-empty point lookup
fetches between 1 and L filter blocks depending on the position
of the target key in the tree, and up to L · FPR index and data
blocks. Further, the read amplification increases exponentially with
α , reaching up to 14.4 for leveling and 21.3 for tiering (for α = 0.8).
Fig. 4(f) also shows that the estimated read amplification for point
lookups is between 1.2× and 1.8× higher for Tier than for leveling
strategies. This higher read amplification for Tier is owing to the
larger number of sorted runs in the tree, and is in line with O7.
O9: The Effect of Compactions on Range Scans is Marginal.
To answer a range query the LSM-Tree instantiates multiple run-
iterators that sequentially scan each sorted run that contains pages
with matching data. Thus, the performance of a range query de-
pends on (i) the scan time of the iterators (which is related to the
query selectivity) and (ii) the time to merge the data streamed by
each iterator. Regardless of the exact compaction strategy, the num-
ber of sorted runs in a leveled LSM-tree remains the same (one per
level), which results in largely similar range query latency for all
leveled compaction variations, especially for larger selectivity (Fig.
4(g)). Note that in the absence of updates and deletes, the overall
amount of data qualifying for a range query is virtually identical
for leveling and tiering despite the number of sorted runs being
higher in tiering. The ∼5% higher average range query latency for
Tier is attributed to the additional I/Os needed to handle partially
consumable disk pages from each run (O(L ·T) in the worst case).

TA VI: In absence of updates/deletes, the range query latency is un-
affected by compactions. For workloads with unique inserts, the total
amount of data sort-merged by the iterators is largely similar for all com-
paction strategies, leading to similar range query performance.

5.1.3 Executingmixedworkloads. Wenowdiscuss performance
implications when ingestion (thus compaction) and read queries
are interleaved. In this experiment we interleave the ingestion of
10M unique key-value entries with 1M point lookups on existing
keys. All read queries are performed after L − 1 levels are full.
O10: Tail Latency forWrites is Higher for MixedWorkloads.
Fig. 5(a) and (b) show that the mean latency of compactions that
are interleaved with point queries is only marginally affected for
all compaction strategies. This is also corroborated by the write
amplification remaining unaffected by mixing reads and writes as
shown in Fig. 5(c). On the other hand, Fig. 5(d) shows that the tail
write latency is significantly increased between 2–15× when read
queries are interleavedwith compactions. This increase is attributed
to (1) the need of point queries to access filter and index blocks that
requires disk I/Os that compete with writes and saturate the device,
and (2) the delay of memory buffer flushing during lookups.

O11: InterleavingCompactionswithPointQueriesKeeps the
Cache Warm. Since in this experiment we start the point queries
when L − 1 levels of the tree are full we expect that the interleaved
read query execution will be faster than the serial one, by 1/L (25%
in our configuration) which corresponds to the difference in the
height of the trees. However, Fig. 5(e) shows this difference to be be-
tween 26% and 63% for non-empty queries and between 69% and 81%
for empty queries. The reasons interleaved point query execution
is faster than expected are that (1) about 10% of lookups terminate
within the memory buffer, without requiring any disk I/Os, and (2)
the block cache is pre-warmed with filter, index, and data blocks
cached during compactions. Putting together the marginal impact
of interleaved execution to compactions and the significant benefits
for point queries, the total workload execution time is 1.6–2.1×
faster than serial execution as shown in Fig. 5(f).

TA VII: Compactions help lookups by pre-warming the block cache
with index and filter blocks for mixed workloads. As the file metadata
including the index and filter blocks needs to be updated during compactions,
the block cache is pre-warmed with the filter, index, and data blocks, which
helps the subsequent point lookups.

5.2 Workload Influence
Next, we analyze the implications of the workload distribution and
composition on compactions.
5.2.1 Varying the Ingestion Distribution. In this experiment
we use a mixed workload that varies the ingestion distribution
(uniform, Zipfianwith s = 1.0 , normal with 34% standard deviation)
and has uniform lookup distribution.
O12: Ingestion Performance is Agnostic to Insert Distribu-
tion. Fig. 4(a), 6(a), and 6(e) show that the total data movement
during compactions remains virtually identical for (unique) insert-
only workloads generated using uniform, Zipfian, and normal dis-
tributions, respectively. Further, we observe that the mean and tail
compaction latencies are agnostic of the ingestion distribution (Fig.
4(c), 6(b), and 6(f) are almost identical as well). As long as the data
distribution does not change over time, the entries in each level fol-
low the same distribution and the overlap between different levels
remains the same. Therefore, for an ingestion-only workload the data
distribution does not influence the choice of compaction strategy.
O13: Insert Distribution Influences Point Queries. Fig. 6(c)
shows that while tiering has a slightly higher latency for point
lookups, the relative performance of the compaction strategies is
close to each other for any fraction of non-empty queries in the
workload (all values of α). As α→1, the filter and index block misses
in the block cache diminishes sharply and approaches zero. Note
that in this experiment the inserts are generated using Zipfian dis-
tribution and target a small part of the domain. This allows a large

9

0.5

1.0

2.0

4.0

8.0

Full LO+1 LO+2 RR Cold Old TierCo
m

pa
ct

io
n

la
te

nc
y

(s
)

0.5

1.0

2.0

4.0

8.0

Full LO+1 LO+2 RR Cold Old Tier
Compaction strategiesCo

m
pa

ct
io

n
la

te
nc

y
(s

)

Z
ip

fia
n

in
se

rt
s/

U
ni

fo
rm

 p
oi

nt
 lo

ok
up

s
N

or
m

al
 in

se
rt

s/
U

ni
fo

rm
 p

oi
nt

 lo
ok

up
s

read write

Full LO+1LO+2 RR Cold Old Tier
0

10

20

30

40

50

D
at

a
m

ov
ed

 (G
B)

read write

Full LO+1LO+2 RR Cold Old Tier
0

10

20

30

40

50

Compaction strategies

D
at

a
m

ov
ed

 (G
B)

α = 0.0 α = 0.4 α = 0.8

Full LO+1LO+2 RR Cold Old Tier
0

5

10

15

20

25

Re
ad

 a
m

pl
ifi

ca
tio

n

α = 0.0 α = 0.4 α = 0.8

Full LO+1LO+2 RR Cold Old Tier
0

5

10

15

20

25

Compaction strategies

Re
ad

 a
m

pl
ifi

ca
tio

n

Full
LO+1

LO+2
RR

Cold
Old

Tier

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Po
in

t l
oo

ku
p

la
te

nc
y

(m
s)

Full
LO+1

LO+2
RR

Cold
Old

Tier

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Proportion of empty point lookups (α)

Po
in

t l
oo

ku
p

la
te

nc
y

(m
s)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: As the ingestion distribution changes to (a-d) Zipfian and (e-h) normal with standard deviation, the ingestion perfor-
mance of the database remains nearly identical with improvement in the lookup performance.

Full
LO+1

LO+2
RR

Cold
Old

Tier

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Proportion of empty point lookups (α)

Po
in

t l
oo

ku
p

la
te

nc
y

(m
s)

α = 0.0 α = 0.4 α = 0.8

Full LO+1LO+2 RR Cold Old Tier
0

5

10

15

20

25

Compaction strategies

Re
ad

 a
m

pl
ifi

ca
tio

n

Full
LO+1

LO+2
RR

Cold
Old

Tier

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Proportion of empty point lookups (α)
Po

in
t l

oo
ku

p
la

te
nc

y
(m

s)

α = 0.0 α = 0.4 α = 0.8

Full LO+1LO+2 RR Cold Old Tier
0

5

10

15

20

25

Compaction strategies

Re
ad

 a
m

pl
ifi

ca
tio

n(a) (b) (c) (d)

U
ni

fo
rm

 in
se

rt
s/

Z
ip

fia
n

po
in

t l
oo

ku
ps

U
ni

fo
rm

 in
se

rt
s/

N
or

m
al

 p
oi

nt
 lo

ok
up

s

Fig. 7: Skewed lookup distributions like Zipfian (a, b) and normal (c, d) improve the lookup performance dramatically in the
presence of a block cache and with the assistance of Bloom filters.

fraction of the non-existing point lookups to terminate in memory
by simply utilizing file metadata (i.e., the min/max keys contained
in each file) without requiring to fetch any filter (and index) blocks.
In Fig. 6(d), we observe that the read amplification remains com-
parable to that in Fig. 4(f) (uniform ingestion) for α = 0 and even
α = 0.4. However, for α = 0.8, the read amplification in Fig. 6(d)
becomes 65%-75% smaller than in the case of uniform inserts. The
I/Os performed to fetch the filter blocks is close to zero. This shows
that all compaction strategies perform equally well while executing
an empty query-heavy workload on a database pre-populated with
Zipfian inserts. In contrast, when performing lookups on a database
pre-loaded with normal ingestion, the point lookup performance
(Fig. 6(g)) largely resembles its uniform equivalent (Fig. 4(h)), as
the ingestion-skewness is comparable. The filter and index block
hits are ∼ 10% higher for the normal distribution compared to uni-
form for larger values of α , which explains the comparatively lower
read amplification shown in Fig. 6(h). This plot also shows the first
case of unpredictable behavior of LO+2 for α = 0 and α = 0.2. We
observe more instances of such unpredictable behavior for LO+2,
which probably explains why it is rarely used in new LSM stores.

5.2.2 Varying the Point Lookup Distribution. In this exper-
iment, we change the point lookup distribution to Zipfian and
normal, while keeping the ingestion distribution as uniform.
O14: Point Lookup Distribution Significantly Affects Perfor-
mance. Zipfian point lookups on uniformly populated data leads
to low latency point queries for all compaction strategies, as shown
in Fig. 7(a) because the block cache is enough for the popular blocks
in all cases, as also shown by the low read amplification in Fig. 7(b).
On the other hand, when queries follow the normal distribution
partial compaction strategies LO+1 and LO+2 dominate all other

approaches, while Tier is found to be perform significantly slower
than all other approaches, as shown in Fig. 7(c) and 7(d).

TA VIII: For skewed ingestion/lookups, all compaction strategies be-
have similarly in terms of lookup performance. While the ingestion
distribution does not influence its performance, heavily skewed ingestion or
lookups impacts query performance due to block cache and file metadata.

5.2.3 Varying the Proportion of Updates. We now vary the
update-to-insert ratio, while interleaving queries with ingestion.
An update-to-insert ratio 0means that all inserts are unique, while a
ratio 8means that each unique insert receives 8 updates on average.
O15: For Higher Update Ratio Compaction Latency for Tier-
ing Drops; LO+2 Dominates the Leveling Strategies. As the
fraction of updates increases the compaction latency decreases
significantly for tiering because we discard multiple updated en-
tries in every compaction (Fig. 8(a)). We observe similar but less
pronounced trends for Full and LO+2, while the remaining leveling
strategies remain largely unchanged. Overall, larger compaction
granularity helps to exploit the presence of updates by invalidating
more entires at a time.Among the leveling strategies, LO+2 performs
best as it moves ∼20% less data during compactions, which also
affects write amplification as shown in Fig. 8(b).
O16: As the Update Fraction Increases, Compactions Show
More Stable Performance. We previously discussed that Tier
has the highest tail compaction latency. As the fraction of updates
increase all compaction strategies including Tier have lower tail
compaction latency Fig. 8(c) shows that Tier’s tail compaction
latency drops from 6× higher than Full to 1.2× for update-to-
insert ratio 8, which demonstrates that Tier is most suitable for
update-heavy workloads. We also observe that lookup latency and
read amplification also decrease for update-heavy workloads.

10

8 16 32 64 128 256
0

10

20

30

40

50

60

Entry size (Bytes) [log scale]

W
rit

e
am

pl
ifi

ca
tio

n

8 16 32 64
0

2

4

6

8

10

Buffer size (MB) [log scale]

M
ea

n
co

m
pa

ct
io

n
la

te
nc

y
(s

)

8 16 32 64
0

10

20

30

40

50

Buffer size (MB) [log scale]

W
rit

e
am

pl
ifi

ca
tio

n

218 219 220 221 222 223
0

2

4

6

8

Data size (Bytes) [log scale]

Ta
il

co
m

pa
ct

io
n

la
te

nc
y

(s
)

DPL33
TSD

DPL50

2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

% deletes in workload

Sp
ac

e
am

pl
ifi

ca
tio

nDPL33
TSD

DPL50

2 4 6 8 10
0

50

100

150

200

250

300

% deletes in workload

#T
om

bs
to

ne
s

Full
LO+1
LO+2
RR

Cold
Old
Tier

0 2 4 6 8
0

2

4

6

8

10

Update−to−insert ratio

Ta
il

co
m

pa
ct

io
n

la
te

nc
y

(s
)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Full LO+1 TSD Tier TSA33TSA50
0

10

20

30

40

50
read write

Compaction strategies

D
at

a
m

ov
ed

 (G
B)

0 2 4 6 8
0

20

40

60

80

100

Update−to−insert ratio
W

rit
e

am
pl

ifi
ca

tio
n

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Update−to−insert ratio

M
ea

n
co

m
pa

ct
io

n
la

te
nc

y
(s

)

LO+2
RR

218 219 220 221 222 223
0

10

20

30

40

50

Data size (Bytes) [log scale]

W
rit

e
am

pl
ifi

ca
tio

n

218 219 220 221 222 223
0.0

0.2

0.4

0.6

0.8

1.0

Data size (Bytes) [log scale]

M
ea

n
co

m
pa

ct
io

n
la

te
nc

y
(s

)

8 16 32 64 128 256
0.0

0.5

1.0

1.5

2.0

2.5

Entry size (Bytes) [log scale]

M
ea

n
co

m
pa

ct
io

n
la

te
nc

y
(s

)

29 210 211 212 213 214
0

1

2

3

Page size (Byte) [log scale]

M
ea

n
co

m
pa

ct
io

n
la

te
nc

y
(s

)

8 16 32 64
0

5

10

15

Buffer size (MB) [log scale]

Ta
il

co
m

pa
ct

io
n

la
te

nc
y

(s
)

Fig. 8: Varying workload and data characteristics (a-k), and LSM tuning (l-o) demonstrates that there is no perfect compaction
strategy – choosing the appropriate compaction strategy is subject to the workload and the performance goal.

TA IX: Tiering dominates the performance space for update-
intensive workloads.When subject to update-intensive workloads, Tier
exhibits superior compaction performance on average along with comparable
lookup performance (as leveled LSMs), which allows Tier to dominate the
overall performance space.

5.2.4 Varying Delete Proportion. We now analyze the impact
of deletes, which manifest as out-of-place invalidations with special
entries called tombstones [44]. We keep the same data size and vary
the proportion of point deletes in the workload. All deletes are
issued on existing keys and are interleaved with the inserts.
O17: TSD and TSAOffer SuperiorDelete Performance.Wequan-
tify the efficacy of deletion using the number of tombstones at the
end of the workload execution. The lower this number the faster
deleted data has been purged from the database, which in turn re-
duces space, write, and read amplification. Fig. 8(d) shows that TSD
and TSA, the partial compaction strategies that are optimized for
deletes, maintain the fewer tombstones at the end of the experiment.
For a workload with 10% deletes, TSD purges 16% more tombstones
than Tier and 5% more tombstones by picking the files that have a
tombstone density above a pre-set threshold for compaction. For
TSA, we experiment with two different thresholds for delete per-
sistence: TSA33 and TSA50 is set to 25% and 50% of the experiment
run-time, respectively. As TSA guarantees persistent deletes within
the thresholds set, it compacts more data aggressively, and ends up
with 7–10% fewer tombstones as compared to TSD. Full manages
to purge more tombstones than any partial compaction routine,
as it periodically compacts entire levels. Tier retains the highest
number of tombstones as it maintains the highest number of sorted
runs overall. As the proportion of deletes in the workload increases,
the number of tombstones remaining the LSM-tree (after the exper-
iment is over) increases. TSA and TSD along with Full scale better

than the partial compaction routines and tiering. By compacting
more tombstones, TSA and TSD also purge a larger amount of invalid
data reducing space amplification, as shown in Fig. 8(e).
O18: Optimizing for Deletes comes at a (Write) Cost. The re-
duced space amplification offered by TSA and TSD is achieved by
compacting the tombstones eagerly, which increases the overall
amount of data moved due to compaction. Fig. 8(f) shows that
TSD and TSA50 compacts 18% more data than the write optimized
LO+1 (for TSA33 this becomes 35%). Thus, TSD and TSA are useful
when the objective is to (i) persist deletes timely or (ii) reduce space
amplification caused by deletes.

TAX: TSD and TSA are tailored for deletes. In presence of deletes, TSA and
TSD purges significantly more tombstones eagerly reducing space amplifica-
tion. TSA ensures timely persistent deletion; however, for smaller persistence
threshold, more data needs to be compacted to meet the threshold.

5.2.5 Varying the Ingestion Count. In this set of experiments
we vary the ingestion count to report scalability.
O19: Tiering Scales Better than Leveling in terms of Com-
paction Latency But has Very High Tail Latency. The mean
compaction latency scales sub-linearly for all compaction strate-
gies, as shown in Fig. 8(g). The relative advantages of the different
compaction strategies, however, remain similar, which shows that data
size is not a determining factor when selecting the appropriate com-
paction strategy. This is further backed up by Fig. 8(h) which shows
how write amplification scales. However, for latency-sensitive ap-
plications, as data size grows, the worst-case overlap of files in
consecutive levels increases significantly for Tier (Fig. 8(i)).

5.2.6 Varying Entry Size. Here, we keep the key size constant
(4B) and vary the value field from 4B to 254B to vary the entry size.

11

O20: For Smaller Entry Size, Leveling Compactions areMore
Expensive. Smaller entry size increases the number of entries per
page, which in turn, leads to (i) more keys to be compared during
merge and (ii) bigger Bloom filters that require more space per file
and more CPU for hashing. Fig. 8(j) shows these trends. We also
observe similar trends for write amplification in Fig. 8(k) and for
query latency. They both decrease as the entry size increases.

5.3 LSM Tuning Influence
In the final part of our analysis, we discuss the interplay of com-
pactions with the standard LSM tunings knobs. We vary knobs
like memory buffer size, page size, and size ratio, and analyze their
impact on the compaction strategies employed. In the interest of
space, we only include the most important results, while the rest
can be found in an extended version of this paper [45].
O21: Tiering Offers Enhanced Ingestion Performance as the
Buffer Size Increases. Fig. 8(l) shows that as the buffer size in-
creases, the mean compaction latency increases across all com-
paction strategies. The size of buffer dictates the size of the files
on disk, and larger file size leads to more data being moved per
compaction. Also, for larger file size, the filter size per file increases
along with the time spent for hashing, which increases compaction
latency. Further, as the buffer size increases, the mean compaction
latency for Tier scales better than the other strategies. Fig. 8(m)
shows that the high tail compaction latency for Tier plateaus
quickly as the buffer size increases, and eventually crossovers with
that for the eagerer compaction strategies when the buffer size
becomes 64MB.

We also observe in Fig. 8(n) that among the partial compaction
routines Old experiences an increased write amplification through-
out, while LO+1 and LO+2 consistently offer lower write amplifica-
tion and guarantee predictable ingestion performance.
O22: All Compaction Strategies React Similarly to Page Size
Change. In this experiment, we vary the logical page size, which
in turn, changes the number of entries per page. The smaller the
page size, the larger is the number of pages per file – which means
more I/Os are required to access a file on the disk. For example,
when the page size shrinks from 210B to 29B, the number of pages
per file doubles. With smaller page size, the index block size per file
increases as more pages should be indexed, which also contributes
to the increasing I/Os. Thus, an increase in the logical page size,
reduces the mean compaction latency, as shown in Fig. 8(o).
O23: Miscellaneous Observations.We also vary LSM tuning pa-
rameters such as the size ratio, the memory allocated to Bloom
filters, and the size of the block cache. We observe that changing
the values of these knobs affects the different compaction strategies
similarly, and hence, does not influence the choice of the appropri-
ate compaction strategy for any particular set up. In the interest of
space, we do not include the detailed results here, but the interested
reader can find them in the Appendix of our technical report [45].

6 DISCUSSION
The design space detailed in Section 3 and the experimental analysis
presented in Section 5 aim to offer to database researchers and
practitioners the necessary insights to make educated decisions
when selecting compaction strategies for LSM-based data stores.

Know Your LSM Compaction. LSM-trees are considered “write-
optimized”, however, in practice their performance strongly de-
pends on when and how compactions are performed. We depart from
the notion of treating compactions as a black-box, and instead, we
formalize LSM compactions as an ensemble of four fundamental
compaction primitives. This allows us to reason about each of these
primitives and navigate the LSM compaction design space in search
of the appropriate compaction strategy for a workload or for custom
performance goals. Further, the proposed compaction design space
provides the necessary intuition about how simple modifications
to an existing engine (like data movement policy or compaction
granularity) can be key to achieving significant performance im-
provement or cost benefits.
Avoiding the Worst Choices. We discuss how to avoid com-
mon pitfalls. For example, tiering is often considered as the write-
optimized variant, however, we show that it comes with high tail
latency, making it unsuitable for applications that need worst-case
performance guarantees. On the other hand, partial compactions
with leveling, and especially hybrid leveling (e.g., 1-leveling) offer
the most stable performance.
AdaptingwithWorkloads. In prior work tiering is used for write-
intensive use-cases, while leveling offers better read performance.
However, in practice, in mixed HTAP-style workloads, lookups
have a strong temporal locality, and are essentially performed on
recent hot data. In such cases, the block cache is frequently proved
to be enough for holding the working set and eliminate the need
for other costly optimizations for read queries.
Exploring New Compaction Strategies. Ultimately, this work
lays the groundwork for exploring the vast design space of LSM
compactions. A key intuition we developed during this analysis is
that contrary to existing designs, LSM-based systems can benefit
by employing different compaction primitives at different levels,
depending on the exact workload and the performance goals. The
compaction policies we experimented with already support a wide
range of metrics they optimize for including system throughput,
worst-case latency, read, space, and write amplification, and delete
efficiency. Using the proposed design space, new compaction strate-
gies can be designed with new or combined optimization goals. We
also envision systems that automatically select compaction strate-
gies on the fly depending on the current context and workload.

7 CONCLUSION
LSM-based engines offer efficient ingestion and competitive read
performance, while being able tomanage various optimization goals
like write and space amplification. A key internal operation that is
at the heart of how LSM-trees work is the process of compaction
that periodically re-organizes the data on disk.

We present the LSM compaction design space that uses four prim-
itives to define compactions: (i) compaction trigger, (ii) compaction
eagerness, (iii) compaction granularity, and (iv) data movement
policy. We map existing approaches in this design space and we
select several representative policies to study and analyze their
impact on performance and other metrics including write/space
amplification and delete latency. We present an extensive collection
of observations, and we lay the groundwork for LSM systems that
can more flexibly navigate the design space for compactions.

12

REFERENCES
[1] W. Y. Alkowaileet, S. Alsubaiee, and M. J. Carey. An LSM-based Tuple Com-

paction Framework for Apache AsterixDB. Proceedings of the VLDB Endowment,
13(9):1388–1400, 2020.

[2] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J. Carey,
I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y.-S.
Kim, C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen,
and T. Westmann. AsterixDB: A Scalable, Open Source BDMS. Proceedings of the
VLDB Endowment, 7(14):1905–1916, 2014.

[3] Amazon. EBS volume types. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-
volume-types.html.

[4] Amazon. EC2 Instance Types. https://aws.amazon.com/ec2/instance-types/.
[5] Apache. Accumulo. https://accumulo.apache.org/.
[6] Apache. Cassandra. http://cassandra.apache.org.
[7] Apache. HBase. http://hbase.apache.org/.
[8] M. Athanassoulis and S. Idreos. Design Tradeoffs of Data Access Methods. In

Proceedings of the ACM SIGMOD International Conference on Management of Data,
Tutorial, 2016.

[9] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos, A. Ailamaki, and
M. Callaghan. Designing Access Methods: The RUM Conjecture. In Proceedings
of the International Conference on Extending Database Technology (EDBT), pages
461–466, 2016.

[10] O. Balmau, F. Dinu, W. Zwaenepoel, K. Gupta, R. Chandhiramoorthi, and D. Di-
dona. SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores.
In Proceedings of the USENIX Annual Technical Conference (ATC), pages 753–766,
2019.

[11] O. Balmau, F. Dinu, W. Zwaenepoel, K. Gupta, R. Chandhiramoorthi, and D. Di-
dona. SILK+ Preventing Latency Spikes in Log-StructuredMerge Key-Value Stores
Running Heterogeneous Workloads. ACM Trans. Comput. Syst., 36(4):12:1–12:27,
2020.

[12] M. Callaghan. Compaction priority in RocksDB.
http://smalldatum.blogspot.com/2016/02/compaction-priority-in-rocksdb.html,
2016.

[13] M. Callaghan. Compaction stalls: something to make better in RocksDB.
http://smalldatum.blogspot.com/2017/01/compaction-stalls-something-to-
make.html, 2017.

[14] M. Callaghan. The Insert Benchmark. http://smalldatum.blogspot.com/2017/06/the-
insert-benchmark.html, 2017.

[15] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for
Structured Data. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 205–218, 2006.

[16] CockroachDB. Open Isuue: Storage: Performance degradation caused by kv
tombstones. https://github.com/cockroachdb/cockroach/issues/17229, 2017.

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with YCSB. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC), pages 143–154, 2010.

[18] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal Navigable Key-
Value Store. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 79–94, 2017.

[19] N. Dayan, M. Athanassoulis, and S. Idreos. Optimal Bloom Filters and Adap-
tive Merging for LSM-Trees. ACM Transactions on Database Systems (TODS),
43(4):16:1–16:48, 2018.

[20] N. Dayan and S. Idreos. Dostoevsky: Better Space-Time Trade-Offs for LSM-
Tree Based Key-Value Stores via Adaptive Removal of Superfluous Merging. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 505–520, 2018.

[21] N. Dayan and S. Idreos. The Log-StructuredMerge-Bush & theWacky Continuum.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD), pages 449–466, 2019.

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. ACM SIGOPS Operating Systems Review, 41(6):205–220,
2007.

[23] S. Dong. Option of Compaction Priority.
https://rocksdb.org/blog/2016/01/29/compaction_pri.html, 2016.

[24] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and M. Strum. Optimiz-
ing Space Amplification in RocksDB. In Proceedings of the Biennial Conference on
Innovative Data Systems Research (CIDR), 2017.

[25] Facebook. RocksDB. https://github.com/facebook/rocksdb.
[26] G. Golan-Gueta, E. Bortnikov, E. Hillel, and I. Keidar. Scaling Concurrent Log-

Structured Data Stores. In Proceedings of the ACM European Conference on
Computer Systems (EuroSys), pages 32:1–32:14, 2015.

[27] Google. LevelDB. https://github.com/google/leveldb/.
[28] HBase. Online reference. http://hbase.apache.org/, 2013.
[29] G. Huang, X. Cheng, J. Wang, Y.Wang, D. He, T. Zhang, F. Li, S. Wang,W. Cao, and

Q. Li. X-Engine: An Optimized Storage Engine for Large-scale E-commerce Trans-
action Processing. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, pages 651–665, 2019.
[30] HyperLevelDB. Online reference. https://github.com/rescrv/HyperLevelDB.
[31] S. Idreos and M. Callaghan. Key-Value Storage Engines. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, pages 2667–2672,
2020.

[32] S. Idreos, N. Dayan, W. Qin, M. Akmanalp, S. Hilgard, A. Ross, J. Lennon, V. Jain,
H. Gupta, D. Li, and Z. Zhu. Design Continuums and the Path Toward Self-
Designing Key-Value Stores that Know and Learn. In Proceedings of the Biennial
Conference on Innovative Data Systems Research (CIDR), 2019.

[33] A. Kryczka. Compaction Styles. https://github.com/facebook/rocksdb/blob/gh-
pages-old/talks/2020-07-17-Brownbag-Compactions.pdf, 2020.

[34] LinkedIn. Voldemort. http://www.project-voldemort.com.
[35] C. Luo and M. J. Carey. LSM-based Storage Techniques: A Survey. The VLDB

Journal, 29(1):393–418, 2020.
[36] F. Mei, Q. Cao, H. Jiang, and J. Li. SifrDB: A Unified Solution for Write-Optimized

Key-Value Stores in Large Datacenter. In Proceedings of the ACM Symposium
on Cloud Computing, SoCC 2018, Carlsbad, CA, USA, October 11-13, 2018, pages
477–489, 2018.

[37] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured merge-tree
(LSM-tree). Acta Informatica, 33(4):351–385, 1996.

[38] A. Pantelopoulos and N. G. Bourbakis. Prognosis: a wearable health-monitoring
system for people at risk: methodology and modeling. IEEE Trans. Information
Technology in Biomedicine, 14(3):613–621, 2010.

[39] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham. PebblesDB: Building
Key-Value Stores using Fragmented Log-Structured Merge Trees. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP), pages 497–514,
2017.

[40] K. Ren, Q. Zheng, J. Arulraj, and G. Gibson. SlimDB: A Space-Efficient Key-
Value Storage Engine For Semi-Sorted Data. Proceedings of the VLDB Endowment,
10(13):2037–2048, 2017.

[41] RocksDB. Leveled Compaction. https://github.com/facebook/rocksdb/wiki/Leveled-
Compaction, 2020.

[42] RocksDB. Universal Compaction. https://github.com/facebook/rocksdb/wiki/Universal-
Compaction, 2020.

[43] S. Sarkar, J.-P. Banâtre, L. Rilling, and C. Morin. Towards Enforcement of the EU
GDPR: Enabling Data Erasure. In Proceedings of the IEEE International Conference
of Internet of Things (iThings), pages 1–8, 2018.

[44] S. Sarkar, T. I. Papon, D. Staratzis, and M. Athanassoulis. Lethe: A Tunable Delete-
Aware LSM Engine. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 893–908, 2020.

[45] S. Sarkar, D. Staratzis, Z. Zhu, and M. Athanassoulis. Constructing and Analyzing
the LSM Compaction Design Space. https://disc-projects.bu.edu/documents/DiSC-
TR-LSM-Compaction-Analysis.pdf, 2021.

[46] S. Sarkar, D. Staratzis, Z. Zhu, and M. Athanassoulis. K-V Workload Generator.
https://github.com/BU-DiSC/K-V-Workload-Generator, 2021.

[47] S. Sarkar, D. Staratzis, Z. Zhu, and M. Athanassoulis. LSM Compaction Analysis.
https://github.com/BU-DiSC/LSM-Compaction-Analysis, 2021.

[48] ScyllaDB. Online reference. https://www.scylladb.com/.
[49] R. Sears and R. Ramakrishnan. bLSM: A General Purpose Log Structured Merge

Tree. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 217–228, 2012.

[50] Tarantool. Online reference. https://www.tarantool.io/.
[51] D. Teng, L. Guo, R. Lee, F. Chen, S. Ma, Y. Zhang, and X. Zhang. LSbM-tree:

Re-Enabling Buffer Caching in Data Management for Mixed Reads and Writes.
In 37th IEEE International Conference on Distributed Computing Systems, ICDCS
2017, Atlanta, GA, USA, June 5-8, 2017, pages 68–79, 2017.

[52] D. Teng, L. Guo, R. Lee, F. Chen, Y. Zhang, S. Ma, and X. Zhang. A Low-cost Disk
Solution Enabling LSM-tree to Achieve High Performance for Mixed Read/Write
Workloads. ACM Trans. Storage, 14(2):15:1—-15:26, 2018.

[53] WiredTiger. Source Code. https://github.com/wiredtiger/wiredtiger.
[54] WiredTiger. Merging in WiredTiger’s LSM Trees.

https://source.wiredtiger.com/develop/lsm.html, 2021.
[55] L. Yang, H. Wu, T. Zhang, X. Cheng, F. Li, L. Zou, Y. Wang, R. Chen, J. Wang,

and G. Huang. Leaper: A Learned Prefetcher for Cache Invalidation in LSM-tree
based Storage Engines. Proceedings of the VLDB Endowment, 13(11):1976–1989,
2020.

APPENDIX
A SUPPLEMENTARY EXPERIMENTS
In this appendix, we present the supplementary results along with
the auxiliary observations (o) that were omitted from the main
paper due to space constraints. In the interest of space, we limit
our discussion to the most interesting results and observations.

13

0.5

1.0

2.0

4.0

8.0

Full LO+1 LO+2 RR Cold Old Tier

Compaction strategy

C
o
m

p
ac

ti
o
n
 l

at
en

cy
 (

s)

(a) Overall compaction latency

0.25

0.50

1.00

2.00

4.00

Full LO+1 LO+2 RR Cold Old Tier

Compaction strategy

C
P

U
 c

o
m

p
ac

ti
o
n
 l

at
 (

s)

(b) CPU latency for compactions

α = 0.0 α = 0.4 α = 1.0

Full LO+1 LO+2 RR Cold Old Tier
0.0

0.2

0.4

0.6

0.8

1.0

Compaction strategies

#
F

il
te

r
b
lo

ck
s

m
is

s

(c) Block misses for point queries

α = 0.0 α = 0.4 α = 1.0

Full LO+1 LO+2 RR Cold Old Tier
0.0

0.2

0.4

0.6

0.8

1.0

Compaction strategies

#
In

d
ex

 b
lo

ck
s

m
is

s

(d) Index misses for point queries

Fig. 9: (a,b) shows that correlation between the overall latency for compactions and the CPU cycles spent for compactions;
(b,c) shows how the misses to the filter and index blocks change across different compaction strategies as the proportion of
non-empty and empty queries change in a lookup-only workload.

Full

LO+1

LO+2

RR

Cold

Old

Tier

8 16 32 64 128 256 512
0

20

40

60

80

100

Block cache size (MB) [log scale]

M
ea

n
 c

o
m

p
ac

ti
o

n
 l

at
en

cy
 (

s)

(a) Mean compaction latency

8 16 32 64 128 256 512
0

500

1000

1500

2000

2500

Block cache size (MB) [log scale]

W
ri

te
 d

el
ay

s
(s

)

(b) Write delay

Fig. 10: Varying Block Cache (insert-only)

Full

LO+1

LO+2

RR

Cold

Old

Tier

8 16 32 64 128 256 512
0.0

0.5

1.0

1.5

Block cache size (MB) [log scale]

M
ea

n
 c

o
m

p
ac

ti
o

n
 l

at
en

cy
 (

s)

(a) Mean compaction latency

8 16 32 64 128 256 512
0

200

400

600

800

1000

Block cache size (MB) [log scale]

W
ri

te
 d

el
ay

s
(s

)

(b) Write delay

Fig. 11: Varying Block Cache (interleaving with 10% point
lookups)

For better readability, we re-use the subsection titles used in §5
throughout this appendix.

A.1 Performance Implications
Here we present the supplementary results for the serial execution
of the ingestion-only and lookup-only workloads. Details about the
workload specifications along with the experimental setup can be
found throughout §5.1.
o1: The CPU Cost for Compactions is Significant. The CPU
cycles spent due to compactions (Fig. 9(b)) is close to 50% of the
overall time spent for compactions (Fig. 9(a), which is same as Fig.
4(c)) regardless of the compaction strategy. During a compaction
job CPU cycles are spent in (1) the preparation phase to obtain nec-
essary locks and take snapshots, (2) sort-merging the entries during
the compaction, (3) updating the file pointers and metadata, and
(4) synchronizing the output files post compaction. Among these,
the time spent to sort-merge the data in memory dominates the
other operations. This explains the similarity in patterns between

Fig. 9(a) and 9(b). As both the CPU time and the overall time spent
for compactions are driven by the total amount of data compacted,
the plots look largely similar.
o2: Dissecting the Lookup Performance. To analyze the lookup
performance presented in Fig. 4(h), we further plot the block cache
misses for Bloom filters blocks in Fig. 9(c), and the index (fence
pointer) block misses in Fig. 9(d). Note that, both empty and non-
empty lookups must first fetch the filter blocks, hence, for the
filter block misses remain almost unaffected as we vary α . Not
that Tier has more misses because it has more overall sorted runs.
Subsequently, the index blocks are fetched only if the filter probe
returns positive. With 10 bits-per-key the false positive is only 0.8%,
and as we have more empty queries, that is, increasing α , fewer
index blocks are accessed. The filter blocks are maintained at a
granularity of files and in our setup amount to 20 I/Os. The index
blocks are maintained for each disk page and in our setup amount
to 4 I/Os, being 1/5th of the cost for fetching the filter blocks.1. The
cost for fetching the filter block is 5× the cost for fetching the index
block. This, coupled with the probabilistic fetching of the index
block (depending on α and the false positive rate (FPR = 0.8%) of
the filter) leads to a non-monotonic latency curve for point lookups
as α increases, and this behavior is persistent regardless of the
compaction strategy.
1filter block size per file = #entries per file ∗ bits-per-key = 512*128*10B = 80kB; index
block size per file = #entries per file ∗ (key size+pointer size) = 512 ∗ (16+16)B = 16kB.

We vary the block cache for insert-only and mixed workloads
(10% existing point lookups interleaved with insertions). For mixed
workload, the mean compaction latency remains stable when block
cache varies from 8MB to 256MB. However, for insert-only work-
load, the mean compaction latency increases sharply when block
cache is more than 32MB (Fig. 10a and 11a). We observe that for
insert-only workload, the write delay (also termed as write stall)
is more than twice that of mixed workload (Fig. 10b and 11b). We
leave this interesting phenomenon for future discussion. Compared
to full and partial compaction, tiering is more stable with respect
to different block cache size.

A.2 Varying Page Size
When we vary the page size, we observe almost consist patterns
across different compaction strategies for all metrics (Fig. 12a and
12b). It turns out that compaction strategy does not play a big role
for different page sizes.

14

Full

LO+1

LO+2

RR

Cold

Old

Tier

2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

2.5

bits per key

M
ea

n
 c

o
m

p
ac

ti
o

n
 l

at
en

cy
 (

s)

(a) Mean compaction latency

2 4 6 8 10 12
0

5

10

15

20

25

30

bits per key

T
ai

l
co

m
p

ac
ti

o
n

 l
at

en
cy

 (
s)

(b) Tail compaction latency

2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

bits per key

G
et

 l
at

en
cy

 (
m

s)

(c) Mean get latency (empty
queries)

2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

bits per key

G
et

 l
at

en
cy

 (
m

s)

(d) Mean get latency (existing
queries)

Fig. 14: Varying Size Ratio (insert-only)

29 210 211 212 213 214
0

1

2

3

Page size (Byte) [log scale]

M
ea

n
 c

o
m

p
ac

ti
o

n
 l

at
en

cy
 (

s)

(a) Mean compaction latency

29 210 211 212 213 214 215 216
0

10

20

30

40

50

Page size (Byte) [log scale]

W
ri

te
 a

m
p

li
fi

ca
ti

o
n

(b) Write amplification

Fig. 12: Varying Page Size (insert-only)

Full

LO+1

LO+2

RR

Cold

Old

Tier

2 4 6 8 10 16 32

0.0

0.5

1.0

1.5

2.0

Size ratio

M
ea

n
 c

o
m

p
ac

ti
o
n
 l

at
en

cy
 (

s)

(a) Mean compaction latency

2 4 6 8 10 16 32
0

2

4

6

8

10

12

Size ratio

T
ai

l
co

m
p

ac
ti

o
n

 l
at

en
cy

 (
s)

(b) Tail compaction latency

Fig. 13: Varying Size Ratio (insert-only)

A.3 Varying Size Ratio
We also compare the performance for different size ratio. According
to Fig. 13a, tiering has higher mean compaction latency compared
to other strategies when the size ratio is no more than 6 and after
6, full compaction and oldest compaction become the top-2 time-
consuming strategies. In terms of tail compaction strategy in Fig.
13b, tiering is still the worst one compared to other strategies.

A.4 Varying Bits Per Key (BPK)
We also conduct the experiment to investigate the BPK’s influence
over compaction. From Fig. 13a and 14b, the mean and tail com-
paction latency may increase a little bit with increasing bits per
key since larger filter blocks should be written but this increas-
ing is very tiny since the increasing filter block is quite smaller
than all data blocks. At the same, we also observe that the query
latency even increases with increasing BPK (see Fig. 14c and 14d).
This might come from higher filter block misses (Fig. YY) and this
pattern becomes more obvious for existing queries in which case,
accessing filter blocks is completely an extra burden.

15

	Abstract
	1 Introduction
	2 Background
	3 The Compaction Design Space
	3.1 Compaction Primitives
	3.2 Compaction as an Ensemble of Primitives

	4 Benchmarking Compactions
	4.1 Standardization of Compaction Strategies
	4.2 Performance Metrics
	4.3 Benchmarking Methodology

	5 Experimental Evaluation
	5.1 Performance Implications
	5.2 Workload Influence
	5.3 LSM Tuning Influence

	6 Discussion
	7 Conclusion
	References
	A Supplementary Experiments
	A.1 Performance Implications
	A.2 Varying Page Size
	A.3 Varying Size Ratio
	A.4 Varying Bits Per Key (BPK)

